ESCOAMENTO EM CONDUTOS LISOS

ENG.º ENIO TOURASSE (*)

1. INTRODUÇÃO

Verifica-se atualmente uma utilização cada vez mais frequente de tubulações lisas, tanto em plástico como em cobre, para sistemas de abastecimento de água e instalações prediais.

De uma maneira geral, o cálculo dessas linhas é feito com o auxílio da fórmula de Hazen-Williams, com o valor do coeficiente C variando entre 140 e 150, para qualquer diâmetro ou vazão.

De fato, esse procedimento não corresponde à realidade, sendo preferível a utilização de fórmulas modernas para escoamento em condutos lisos, ou, quando muito, adotando-se um valor correto para o coeficiente C, variável tanto com o diâmetro como com a vazão.

A preferência da fôrmula de Hazen-Williams decorre da maior facilidade de aplicação, já que o cálculo pode ser feito diretamente com o auxílio de um ábaco a três variáveis — vazão, diâmetro e perda de carga unitária — ao passo que as fórmulas modernas exigem a determinação de parâmetros auxiliares, sendo necessário inclusive, em alguns casos, o cálculo por tentativas.

Esse inconveniente foi contornado, em trabalho apresentado em 1964 pelo autor 1, com a transformação das fórmulas modernas em equações exponenciais simples; recentemente, também, Henry Liu 2 determinou os coeficientes de escoamento da fórmula de Manning, aplicáveis a tubos lisos.

No presente estudo, serão vistas as equações e os ábacos propostos para o escoamento em condutos lisos, bem como a comparação das fórmulas modernas com a de Hazen-Williams,

Um fato interessante a registrar, é que, ao contrário dos tubos rugosos, o coeficiente C di-

minue com o aumento do diâmetro do encanamento.

2. AS EQUAÇÕES GERAIS DO ESCOAMENTO

2.1 Equação de Darcy-Weisbach

As fórmulas chamadas modernas ou racionais foram determinadas ou confirmadas por experiências precisas, e têm como equação geral a expressão teórica devida a Darcy e Weisbach:

$$J = f - \frac{1}{D} - \frac{v^2}{2g}$$
 (1)

J — perda de carga unitária

D — diâmetro do tubo

v --- velocidade média do fluído

g -- aceleração da gravidade

 f — número adiminsional denominado coeficiende atrito ou de resistência.

O coeficiente f, depende, conforme o tipo de v D escoamento, do número de Reynolds: $R = \frac{v D}{v}$ (onde v é a viscosidade cinemática do fluído); da rugosidade do material: k (altura das asperezas), ou de ambos.

O escoamento pode ser laminar ou turbulento, conforme o número de Reynolds seja menor ou maior do que 2000, respectivamente. A camada laminar que se estende por toda a seção do tubo no caso das pequenas velocidades (R < 2000), rompe-se com o aumento desta, originando o movimento turbulento; mesmo nesse caso, entretanto, ainda existe uma camada laminar de pequena espessura que adere as paredes do tubo, denominada filme laminar.

Revista DAE 45

^(*) Engenheiro do Estado - GB — Professor da Escola de Saúde Pública (Inst. Pres. C. Branco).

2.2 Escoamento Laminar

Para R < 2000, tem-se a equação de Poiseuille:

$$f = -\frac{64}{P} \tag{2}$$

Tal tipo de escoamento raramente é encontrado na prática; o coeficiente de atrito depende unicamente do número de Reynolds.

2.3 Escoamento Turbulento

Nesse caso pode-se distinguir dois tipos de tubos:

- a) quando a altura das asperezas n\u00e3o ultrapassam a espessura do filme laminar, tem-se os tubos lisos.
- b) no caso contrário, tem-se os tubos rugosos.

No grupo do item a, estão incluidos os encanamentos de plástico, cobre, chumbo e latão.

Nesse caso, podem ser utilizadas duas equações para escoamento, conforme os valores do número de Reynolds sejam inferiores ou superiores a 100 000.

 $R < 100\,000$: equação de Blasius

$$\mathbf{f} = \frac{0.316}{\mathbf{R}^{0.25}}.$$
 (3)

R > 100 000: equação de Kármán-Prandtl

$$\frac{1}{\sqrt{f}} = 2 \log R / f = 0.8$$
 (4)

Esta última tem a desvantagem de não ser exponencial simples, o que, entretanto, será contornando por um ajustamento, a ser visto no capítulo seguinte.

3. EQUAÇÕES PARA OS TUBOS LISOS

$$3.1 - R < 100000$$

Tem-se:

$$f = \frac{0.316}{R^{0.25}}$$

De (1), pode-se tirar:

$$f = \frac{2 g J D}{V^2}$$

Tendo em vista que R = $\frac{v\,D}{_{\nu}}$, e, substituindo f e R na equação de Blasius:

$$V = N_1 D^{0.714} J^{0.571}$$

onde

$$N_1 = \left(\frac{2 g}{0.316 r^{-0.25}}\right)^{0.571}$$

ou então, considerando que para a água na temperatura $t=20^{\circ}\text{C}$, vem $r=1.007\times 10^{-6}\text{ m}^2/\text{seg}$, tem-se;

$$V = C_1 \times 76.07 D^{0.714} J^{0.571}$$
 (5)

onde

$$C_1 = -\frac{N_t}{N_{200}}$$

valor que depende unicamente da viscosidade cinemática.

É interessante observar que Flamant, em 1892, propoz a seguinte fórmula para tubos lisos:

$$V = m D^{5/7} J^{4/7} = m D^{0.715} J^{0.571}$$

variando o valor de m, de 68.1 a 75.3.

Em 1903, S aph e Schoder com base em experiências sobre tubos de latão de pequeno diâmetro (até 52 mm), apresentaram a fórmula:

$$V = 74.0 D_{0.71} J_{0.57}$$

Mais recentemente, Fair, Whipple e Hsiáo propuseram para tubos de cobre ou latão de pequeno diâmetro:

$$V = m D_{0.714} J_{0.571}$$

onde

Todas estas equações vem confirmar a exatidão da fórmula de Blasius; inclusive como as experiências foram efetuadas em tubos de diâmetro máximo de 50 mm, poucas vezes foi ultrapassado o valor $R = 100\,000$.

Nesse caso tem-se:

$$\frac{1}{\sqrt{f}} = 2 \log R \sqrt{f} = 0.8$$

Para transformar essa equação em uma exponencial simples, foi utilizado o método dos mínimos quadrados, computando-se valores de R entre 100 000 e 2 500 000; chegou-se a:

$$\frac{1}{\mathbf{f}} = 6.984 \quad \mathbf{R}^{0.1811} \tag{6}$$

Essa transformação dá diferenças máximas da ordem de 0.6%, no cálculo das velocidades, o que é perfeitamente aceitável para as aplicações práticas.

Substituindo em (6), R por v $\mathrm{D}/_r$ e f por seu valor tirado de (3), vem:

$$V = N_{\odot} D^{0.65} J^{0.55}$$

onde

$$N_2 = \left(\frac{2 \text{ g} \times 6.984}{r \cdot 0.1814}\right)^{0.55}$$

ou, ainda, para a água a t = 20°C:

$$v = C_2 \times 59.37 \quad D^{0.65} \quad J^{0.55}$$
 (7),

onde

$$C_2 = \frac{N_t}{N_{200}}$$

Pode-se também notar, que para tubos de fibro-cimento, quase lisos, Ludin apresentou:

$$v = 54.4 \quad D^{0.65} \quad J^{0.54}$$

3.3 Resumo

3.3.1 — As equações para tubos lisos podem ser resumidas em:

$$V = N_1 D^{0.711} J^{0.571}$$

$$N_1 = \left(\frac{2 \text{ g}}{0.316 \text{ p}^{0.25}} \right)^{0.571}$$

b) R > 100 000

$$V = N_2 D^{0.65} J^{0.55}$$

$$N_2 = \left(\begin{array}{cc} 2 & g \times 6.984 \\ \hline r & 0.1814 \end{array}\right)^{0.55}$$

Estas fórmulas são válidas para qualquer tipo de fluído ou qualquer temperatura, dependendo o valor de N, somente das viscosidade cinemática.

3.3.2 — No caso particular da água, tem-se:

a)
$$R < 100000$$

$$v = C_1 \times 76.07 D_{0.714} J_{0.571}$$

b) R > 100000

$$v = C_2 \times 59.37 D^{0.65} J^{0.55}$$

Para a água a 20° C, C_1 e C_2 são iguais a 1; as tabelas I e II dão os valores de C_1 e de C_2 para as diversas temperaturas.

TABELA I

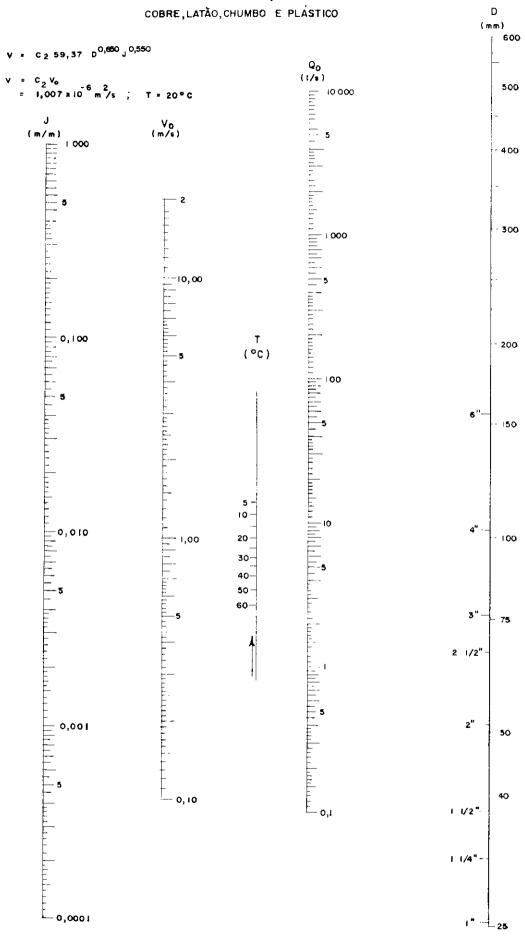
Tempera- tura (°C)	C ₁	Tempera- tura (°C)	\mathbf{C}_1
5	0.943	26	1.020
10	0.963	28	1.026
12	0.971	30	1.033
14	0.979	32	1.039
15	0.982	34	1.045
16	0.986	36	1.051
18	0.993	38	1.056
20	1.000	40	1.062
22	1.007	50	1.089
24	1.013	60	1.112

TABELA II

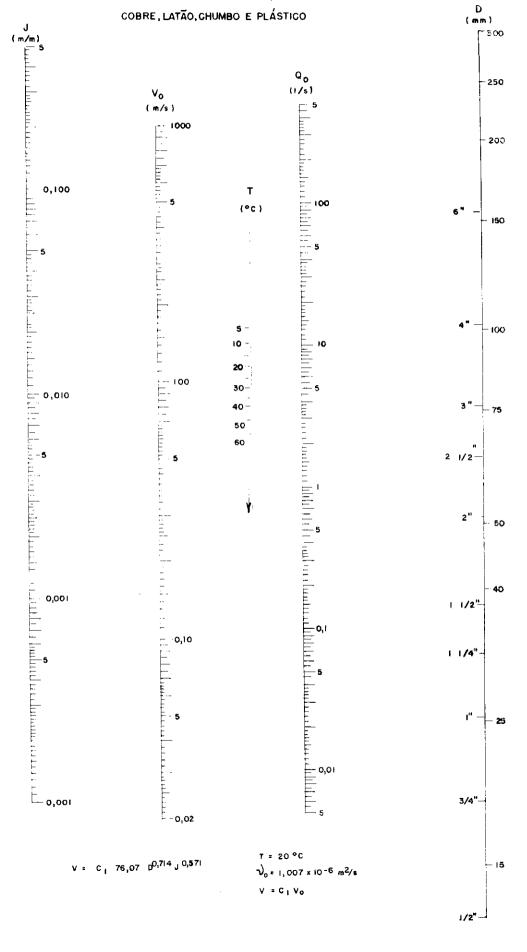
Tempera- tura (°C)	C_2	Tempera- tura (°C)	C_2
5	0.960	26	1.014
10	0.974	28	1.014
$\overline{12}$	0.980	30	1.023
14	0.985	32	1.027
15	0.987	34	1.031
16	0.990	36	1.035
18	0.995	38	1.039
20	1.000	40	1.043
22	1.005	50	1.061
24	1.009	60	1.077

Para tornar mais prática a utilização das equações propostas, foram preparados dois ábacos, para $R < 100\,000$ e $R > 100\,000$, vistos em anexo; eles foram feitos baseados na temperatura de

TUBOS LISOS - R > 100 000



TUBOS LISOS -- R < 100 000



20°C, podendo-se, contudo, usa-los para qualquer temperatura, bastando para isso observar o seguinte procedimento:

- a) utilizar, inicialmente, o ábaco da primeira equação; se a linha de cálculo passar por uma temperatura superior àquela considerada, a condição de R < 100 000 é satisfeita e, portanto, o ábaco que está sendo usado é o correto.
- b) caso contrário, isto é, se a linha passar por uma temperatura inferior à considerada, deve-se utilizar o ábaco seguinte, pois nesse caso $\rm R > 100\,000$.

4. COMPARAÇÃO COM A FÓRMULA DE HAZEN-WILLIAMS

As duas equações propostas podem ser comparadas com a de Hazen-Williams:

$$J = 10.65 (1/C)^{1.852} D^{-4.87} Q^{1.852}$$
 (8)

onde C é o coeficiente citado anteriormente, que depende da natureza das paredes da tubulação.

Será visto em seguida, que para os tubos lisos, o valor de C a ser considerado é variável conforme o diâmetro do tubo e a sua vazão.

Substituindo a perda de carga unitária, J, dada em (8), nas equações (5) e (7), e ainda, considerando uma temperatura de 20°C, já que

a equação de Hazen-Williams não cogita dessa variável, tem-se:

 $R < 100\,000 : C = 171.6 D^{-0.0632} Q^{0.0545}$

 $R > 100\,000 : C = 155.9 D^{-0.0281} Q^{0.0184}$

Os valores de C calculados dessa forma são vistos no gráfico anexo, mostrando que para a utilização da fórmula de Hazen-Williams com tubos lisos, deve-se levar em conta tanto o diâmetro do encanamento como a vazão a escoar.

Conforme já citado no capítulo 1, um fato digno de nota, é que, ao contrário dos tubos rugosos, o coeficiente C diminue com o aumento do diâmetro do encanamento, para a mesma vazão.

BIBLIOGRAFIA

- TOURASSE, ENIO Cálculo dos condutos forçados, I.E.S., 1964.
- LIU, HENRY Manning's coefficient for smooth pipes, ASCE, Journal of the San. Eng. Division, April 1972.

AZEVEDO NETTO, J. M. -- Manual de Hidráulica, S. Paulo, 1957.

FORCHHEIMER, Ph. — Tratado de Hidráulica, trad. por M. LUCINI, Barcelona, 1950.

ROUSE, HUNTER — Elementary Mechanics of Fluids, N. York, 1957.

TRINDADE NEVES, E. — Curso de Hidráulica, P. Alegre, 1960.

VARIAÇÃO DO COEFICIENTE C DE HAZEN-WILLIAMS PARA TUBOS LISOS

