Sub-Adutora ligando dois Reservatórios e servindo em marcha diversas linhas de uma Rêde de Abastecimento Público de Água

ENG. MARCELO FRANCISCO DE LIMA

do Departamento de Águas e Esgotos

Na qualidade de engenheiro a serviço da antiga "Repartição de Águas e Esgôtos de São Paulo", atual "Departamento de Águas e Esgôtos", tivemos a oportunidade de estudar o funcionamento de uma sub-adutora a ser construída entre os reservatórios de Vila América e da Lapa, abastecida por gravidade, a partir de Vila América. Essa sub-adutora foi prevista no "Plano Geral de Abastecimento de Água da Capital" elaborada pelo antigo diretor da RAE, Eng. Plínio Penteado Whitaker — vêr separata da revista "Engenharia" n.º 50, vol. 5, publicada em S. Paulo —, o qual prevê nessa sub-adutora, diversas derivações servindo em marcha a rêde de abastecimento público e prevê ainda a redução do número dessas derivações.

O problema principal consistia na determinação das vazões na extremidade da Lapa, nos três períodos diários de consumo — consumo médio, inferior ao médio e superior ao médio e portanto da vazão total diária a prevêr na Lapa; partindo de um diâmetro dado, dadas as vazões nas diversas derivações, os locais das derivações, as cotas de nível dágua a considerar nos reservatórios de Vila América e da Lapa e os locais dêsses reservatórios.

As vazões nas derivações e os locais das derivações a partir de Vila América, para o caso particular de admitir-se cinco derivações e o período, digamos, de consumo superior ao médio, são dados no quadro que segue:

Número do trecho a partir de Vila América e terminando na Lapa	Comprimento do Trecho	Vazão no período de consumo superior ao médio na Deri- vação a jusante de cada trecho
1.0	497 m	708 1/s
2.º	778	122
3.º	898	226
4.0	688	147
5.°	226	389
6.º	3920	\mathbf{Q}_6
Soma	7007	1592 + Q ₆

OBSERVAÇÕES:

- * Q₆ é a vazão na Lapa, a ser determinada.
- Os coeficientes que dão as vasões em cada um dos três períodos em função do consumo anual médio, são:

- 1.10 para os períodos de 6 h a 9 h e 14 h a 24 h
- 1.60 para o período de 9 h a 14 h
- 0.69 para o período de 0 h a 6 h
- 3) O nível dágua no reservatório de Vila América foi tomado na cota 806,30 m e no da Lapa, na cota 776.0 m, portanto uma diferença de 30.3 m.
- 4) Diâmetro do tubo = 1.0 m.

DETERMINAÇÃO DA VAZÃO NA LAPA

Chamando:

 Q_1 ; Q_2 ; Q_3 ; Q_4 ; Q_5 ; Q_6 ; as vasões que percorrem cada um dos trechos, em m³/s.

1₁; 1₂; 1₃; 1₄; 1₅; 1₆; as extensões dos trechos a partir de Vila América, em metros.

 K_1 ; K_2 ; K_3 ; K_4 ; K_5 ; K_6 ; as vasões nas derivações, em m^3/s .

 H_1 ; H_2 ; H_3 ; H_4 ; H_5 ; H_6 ; as perdas de carga em cada um dos trechos l_1 ; l_2 ; l_3 ; l_4 ; l_5 ; l_6 ; em metros.

H = a perda de carga total $= H_1 + H_2 + H_3 + H_4 + H_5 + H_6$.

J = a perda de carga em m/m de tubulação.

Q = símbolo geral de vazão em m³/s.

 $\alpha =$ coeficeinte de atrito — valor experimental variável com a rugosidade, diâmetro e velocidade.

Admitindo-se que:

- 1) α seja constante para a mesma velocidade e o mesmo diâmetro, para o caso das velocidades usuais.
- 2) $J = \alpha Q^2$ seja a expressão geral relacionando essas quantidades.

E ainda:

Chamando:

$$K'_{1} = K_{1} + K_{2} + K_{3} + K_{4} + K_{5} + (K_{6} = 0)$$
 $K'_{2} = K'_{1} - K_{1}$
 $K'_{3} = K'_{2} - K_{2}$
 $K'_{4} = K'_{3} - K_{4}$
 $K'_{5} = K'_{4} - K_{5}$
 $K'_{8} = K'_{5} - K_{6}$

Teremos:

$$Q_1 = Q_6 + K'_1;$$
 $Q_2 = Q_6 + Q'_2;$ $K'_2;$ $Q_3 = Q_6 + K'_3;$ etc.

Mas:

 ${
m H}_1 = {
m J}\,{
m 1}_1$; ${
m H}_2 = {
m J}\,{
m 1}_2$; ${
m H}_3 = {
m J}\,{
m 1}_3$; etc e substituindo J por seu valor $lpha\,{
m Q}^2$,

Teremos:

$$H_1 = \alpha (Q_6 + K'_1)^2 l_1;$$
 $H_2 = \alpha (Q_6 + K'_2)^2 l_2;$ etc

Donde:

A Equação (1);
$$\mathbf{H} = \mathbf{H}_1 + \mathbf{H}_2 + \mathbf{H}_3 - \text{etc} = \alpha \left[(\mathbf{Q}_6 + \mathbf{K}'_1)^2 \ \mathbf{1}_1 + (\mathbf{Q}_6 + \mathbf{K}'_2)^2 \ \mathbf{1}_2 + (\mathbf{Q}_6 + \mathbf{K}'_3)^2 \ \mathbf{1}_3 + (\mathbf{Q}_6 + \mathbf{K}'_4)^2 \ \mathbf{1}_4 + (\mathbf{Q}_6 + \mathbf{K}'_5)^2 \ \mathbf{1}_5 + (\mathbf{Q}_6 + \mathbf{K}'_6)^2 \ \mathbf{1}_6 \right]$$

Notando na equação precedente:

- 1) Que: os valores de K'_1 ; K'_2 ; K'_3 ; etc. são determinados pelas vazões dadas no quadro anterior para cada uma das derivações.
- 2) Que: Os valores de 1, ; 12; 13; etc. são dados no quadro.
- 3) O valor de $H = H_1 + H_2 + H_3$ etc. é a diferença de nível dágua nos dois reservatórios, dada na "Observação" n.º 3 e igual a 30.3 m.

Conclue-se que:

A única incógnita é o valor de Q_6 , isto é a descarga da Lapa, dada pela solução da referida equação (1).

EXEMPLO

Damos a seguir a solução para o caso do período de consumo superior ao médio, com os dados já declarados no quadro e na observação (3).

Vazões médias de estiagem nas derivações nas horas de consumo superior ao médio — 9 h a 14 h

$$\frac{30.3}{0.0025 \times 7007} = 1.73 = Q_6^2 + 0.74 Q_6 + 0.37$$

$$Q_6^2 + 0.74 Q_6 + (0.37)^2 = 1.73 - 0.37 + (0.37)^2 = 1.73 - 0.37 + 0.137$$

$$Q_6 + 0.37 = (1.50)^{1/2} = 1.22$$

$$Q_6 = 0.85 \,\mathrm{m}^3/\mathrm{s} = \mathrm{Descarga\ na\ Lapa}$$

			н	= Q ²	l		H — Calculados	H — Valores Ajustados
Н6	=	3920	X	0.0025	X	$(0.85)^2 =$	7.1 m	7.0 m
H5	=	226	X	0.0025	X	$(0.85)^2 =$	0.9	0.9
H4	=	688	X	0.0025	×	$(1.39)^2 =$	3.3	3.3
нз	=	898	X	0.0025	X	$(1.62)^2 =$	5.9	5.9
H2	=	778	X	0.0025	X	$(1.74)^2 =$	5.9	5.9
H1	=	497	×	0.0025	×	$(2.44)^2 =$	7.4	7.3
H	=						30.5 m ≅	30.3

Cotas Piezométricas

1 — Reservatório de Vila América	_	=	806.3 m
2 — Rua J. M. Lisbôa	806.3 7.3	=	799.0 m
3 — Rua Bela Cintra	799.0 — 5.9	=	793.1 m
4 — Rua G. Monteiro	793.1 — 5.9	=	787.2 m
5 — Rua T. Sampaio	787.2 — 3.3	=	783.9 m
6 — Rua Arco Verde	738.8 — 0.9	=	783.0 m
7 — Reservatório Lapa	783.0 — 7.0	=	776.0 m

Pelo mesmo processo são determinadas as vasões aos outros dois períodos e portanto a vazão total diária a prevêr na Lapa.

O VALOR DO COEFICIENTE DE ATRITO

Na solução do caso concreto que acabamos de indicar, foi empregado um coeficiente de atrito " α " na expressão $J=\alpha Q^2$, que corresponde à vazão dada pela fórmula de Levy para tubos em uso:

$$v = 20.5 \sqrt{r(1 + 3\sqrt{r})} \times J^{1/2};$$

coeficiente êsse representado por $\alpha = 0.0025$, para tubos de 1,0 m de diâmetro.

Entretanto, sendo êsse coeficiente um valor médio; em estudo subsequente admitimos que êsse valor de $\alpha=0.0025$ pudesse ser acrescido de forma a admitir uma folga de 28% sôbre as vasões exigidas, prevendo assim o valor mais desfavorável a esperar. Em consequência, a fórmula de Levy passa a ter um coeficiente de 16.0 em vez de 20.5 e o valor de α passa de 0.0025 a 1.64 \times 0.0025; pois:

$$V = 20.5 \sqrt{r(1 + 3\sqrt{3})} \times J^{\frac{1}{2}}$$

$$V_{1} = \frac{V}{1.28} = \chi \sqrt{r(1 + 3\sqrt{3})} \times J^{\frac{1}{2}}$$

$$\frac{V}{V_{1}} = 1.28 = \frac{20.5}{\chi}; \quad \chi = 16.0$$

$$Mas \frac{J = \alpha Q^{2}}{J = \alpha_{1} Q_{1}^{2}} = \frac{Q^{2}}{\alpha_{1}} = \frac{V^{2}}{Q_{1}^{2}} = \frac{(20.5)^{2}}{16.4}$$

$$\alpha = 1.64 \alpha_{1}$$

Com êsses dois valores de α ; investigamos a seguir as condições de funcionamento da sub-adutora com suas cinco derivações e também considerando a eliminação parcial e total dessas derivações, determinando a população que poderia ser atendida pelo reservatório da Lapa em cada caso.